Designing synthetic RNAs to determine the relevance of structural motifs in picornavirus IRES elements.

نویسندگان

  • Javier Fernandez-Chamorro
  • Gloria Lozano
  • Juan Antonio Garcia-Martin
  • Jorge Ramajo
  • Ivan Dotu
  • Peter Clote
  • Encarnacion Martinez-Salas
چکیده

The function of Internal Ribosome Entry Site (IRES) elements is intimately linked to their RNA structure. Viral IRES elements are organized in modular domains consisting of one or more stem-loops that harbor conserved RNA motifs critical for internal initiation of translation. A conserved motif is the pyrimidine-tract located upstream of the functional initiation codon in type I and II picornavirus IRES. By computationally designing synthetic RNAs to fold into a structure that sequesters the polypyrimidine tract in a hairpin, we establish a correlation between predicted inaccessibility of the pyrimidine tract and IRES activity, as determined in both in vitro and in vivo systems. Our data supports the hypothesis that structural sequestration of the pyrimidine-tract within a stable hairpin inactivates IRES activity, since the stronger the stability of the hairpin the higher the inhibition of protein synthesis. Destabilization of the stem-loop immediately upstream of the pyrimidine-tract also decreases IRES activity. Our work introduces a hybrid computational/experimental method to determine the importance of structural motifs for biological function. Specifically, we show the feasibility of using the software RNAiFold to design synthetic RNAs with particular sequence and structural motifs that permit subsequent experimental determination of the importance of such motifs for biological function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insights into Structural and Mechanistic Features of Viral IRES Elements

Internal ribosome entry site (IRES) elements are cis-acting RNA regions that promote internal initiation of protein synthesis using cap-independent mechanisms. However, distinct types of IRES elements present in the genome of various RNA viruses perform the same function despite lacking conservation of sequence and secondary RNA structure. Likewise, IRES elements differ in host factor requireme...

متن کامل

Structural basis for the biological relevance of the invariant apical stem in IRES-mediated translation

RNA structure plays a fundamental role in internal initiation of translation. Picornavirus internal ribosome entry site (IRES) are long, efficient cis-acting elements that recruit the ribosome to internal mRNA sites. However, little is known about long-range constraints determining the IRES RNA structure. Here, we sought to investigate the functional and structural relevance of the invariant ap...

متن کامل

Conserved structural motifs located in distal loops of aphthovirus internal ribosome entry site domain 3 are required for internal initiation of translation.

A comparison of picornavirus internal ribosome entry site (IRES) secondary structures revealed the existence of conserved motifs located on loops. We have carried out a mutational analysis to test their requirement for IRES-driven translation. The GUAA sequence, located in the aphthovirus 3A loop, did not tolerate substitutions that disrupt the GNRA motif. Interestingly, this motif was found at...

متن کامل

Functional and structural similarities between the internal ribosome entry sites of hepatitis C virus and porcine teschovirus, a picornavirus.

Initiation of protein synthesis on picornavirus RNA requires an internal ribosome entry site (IRES). Typically, picornavirus IRES elements contain about 450 nucleotides (nt) and use most of the cellular translation initiation factors. However, it is now shown that just 280 nt of the porcine teschovirus type 1 Talfan (PTV-1) 5' untranslated region direct the efficient internal initiation of tran...

متن کامل

Structural insights into viral IRES-dependent translation mechanisms.

A diverse group of viruses subvert the host translational machinery to promote viral genome translation. This process often involves altering canonical translation initiation factors to repress cellular protein synthesis while viral proteins are efficiently synthesized. The discovery of this strategy in picornaviruses, which is based on the use of internal ribosome entry site (IRES) elements, o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Scientific reports

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016